Hirota bilinear equations with linear subspaces of hyperbolic and trigonometric function solutions
نویسندگان
چکیده
Linear superposition principles of hyperbolic and trigonometric function solutions are analyzed for Hirota bilinear equations, with an aim to construct a specific sub-class of N-soliton solutions formulated by linear combinations of hyperbolic and trigonometric functions. An algorithm using weights is discussed and a few illustrative application examples are presented. 2013 Elsevier Inc. All rights reserved.
منابع مشابه
Hirota bilinear equations with linear subspaces of solutions
We explore when Hirota bilinear equations possess linear subspaces of solutions. First, we establish a sufficient and necessary criterion for the existence of linear subspaces of exponential traveling wave solutions to Hirota bilinear equations. Second, we show that multivariate polynomials whose zeros form a vector space can generate the desired Hirota bilinear equations with given linear subs...
متن کاملGeneralized Bilinear Differential Equations
We introduce a kind of bilinear differential equations by generalizing Hirota bilinear operators, and explore when the linear superposition principle can apply to the resulting generalized bilinear differential equations. Together with an algorithm using weights, two examples of generalized bilinear differential equations are computed to shed light on the presented general scheme for constructi...
متن کاملBilinear equations, Bell polynomials and linear superposition principle
A class of bilinear differential operators is introduced through assigning appropriate signs and used to create bilinear differential equations which generalize Hirota bilinear equations. The resulting bilinear differential equations are characterized by a special kind of Bell polynomials and the linear superposition principle is applied to the construction of their linear subspaces of solution...
متن کاملMulti soliton solutions, bilinear Backlund transformation and Lax pair of nonlinear evolution equation in (2+1)-dimension
As an application of Hirota bilinear method, perturbation expansion truncated at different levels is used to obtain exact soliton solutions to (2+1)-dimensional nonlinear evolution equation in much simpler way in comparison to other existing methods. We have derived bilinear form of nonlinear evolution equation and using this bilinear form, bilinear Backlund transformations and construction of ...
متن کاملLinear superposition principle applying to Hirota bilinear equations
A linear superposition principle of exponential traveling waves is analyzed for Hirota bilinear equations, with an aim to construct a specific sub-class of N-soliton solutions formed by linear combinations of exponential traveling waves. Applications are made for the 3 + 1 dimensional KP, Jimbo–Miwa and BKP equations, thereby presenting their particular N-wave solutions. An opposite question is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 220 شماره
صفحات -
تاریخ انتشار 2013